
Eport&HF51 Series Product Linux SDK User Manual

Eport&HF51 Series Product

Linux SDK User Manual

This SDK is applicable for the following products. .

Eport Pro-EP10

Eport Pro-EP20

HF5111A

Eport&HF51 Series Product Linux SDK User Manual

History：

Update Time Author Content Note

2017.1.18 Ke Zhang V1.0, first Edition

2018.2.09 Ke Zhang V1.1, Update to 1.30 Version

2019.5.05 Ke Zhang V1.2, Update to 1.34 Version

Eport&HF51 Series Product Linux SDK User Manual

1. Install Compilation Environment

Eport Linux SDK is managed by OpenWRT and should be built under Linux

environment. The recommended environment is Fedora Core 12, which is already

well tested.

During Fedora system installation, it is recommended to select ‘Developing’ mode, as

some developing tools needed by this SDK will be installed by default. You can also

add those missing tools or commands during compilation phase according to the log

or error raised.

SDK and Fedora(Recommend to use our OS provided) Download Address:

http://ftp.hi-flying.com:9000/EP10_EP20_SDK_Linux_Compile/

SDK: HiFlying_linux_API_140_20200514

SDK Update:

1. hiflying, replace the directory package/hiflying

2.ep10/ep20/hf5111a, replace the binary file epm/eport in directory

utility/target/linux/hiflying/{ep10, ep20, hf5111a}/base-files/bin

http://ftp.hi-flying.com:9000/EP10_EP20_SDK_Linux_Compile/

Eport&HF51 Series Product Linux SDK User Manual

2. Compilation

2.1 Build Process

When Linux environment is ready, extract the released SDK package, eg.

>cd ~

>tar -zxvf HiFlying_linux_UART2ETH_r7112_API.tgz

>cd HiFlying_linux_UART2ETH_r7112_API

Compile the source simply by ‘make’ command, add ‘V=99’ to print out detail debug

information if needed during compilation.

>make V=99

After compilation, you can find target image file under ./image directory, something

like: Hiflying-xxxx-firmware-squashfs.img, xxxx means the target board, currently, we

support three boards, EP10, EP20 and HF5111A.

To compile a single package, go to utility directory, and do

>cd utility

>make package/xxxxxxx/compile(install, clean)

This SDK is OpenWRT based, so the software architecture, package management,

directory structure, and build process are all compatible with OpenWRT. It is

convenient to visit OpenWRT website or go to community to get more information or

help.

2.2 Configuration Files

There are 2 important configuration files, SDK configuration file and Linux kernel

configuration file.

The default SDK configuration file is utility/.config, it is also stored in directory

utility/target/linux/hiflying/xxxx/configs/default.config (‘xxxx’ means the target

board, ie. EP10, EP20 or HF5111A). To change the configuration, just do the

following:

Eport&HF51 Series Product Linux SDK User Manual

>cd utility

>make menuconfig

Then, custom your configuration (target selection, package add or remove...) using

the menu.

The file utility/target/linux/hiflying/xxxx/config-2.6.32-xxxxdefault is the default

kernel configuration file, where xxxx means board type, eg EP10, EP20 and HF5111A.

It is copied to .config under linux kernel top lever directory during compilation, ie

kernel/linux-2.6.32.11.as/.config. To change the configuration, do following:

>cd utility

>make kernel_menuconfig

Then, custom your kernel configuration using the menu.

Eport&HF51 Series Product Linux SDK User Manual

One simpler way to make target image is to run:

>cd utility

>make target/linux/install

You may find image file generated under directory utility/bin/hiflying. Note that, this

should be done only when you have compiled the image at least once.

3. Work With Eport Application

In this SDK, we already integrate our Eport application and by default it starts up

automatically as one of the initial service. It will perform the normal uart to ethernet ,

ethernet to uart functionality, cli (command line), web service, telnet, ntp... In brief,

when you using the default released SDK image, it will act exactly the same as the

product Hi-Flying delivered in market.

Besides all the basic features, this SDK also provides APIs to manipulate or configure

these functions, to provide the SDK users to customize their own utilities based on

those basic functions which are already integrated in Eport application. For example,

SDK users can define their own network protocols, analysis UART data, other than

Eport&HF51 Series Product Linux SDK User Manual

just pass through them done by Eport application.

By using the interface, SDK users can also develop custom WEB page, integrate own

configuration in Eport existing WEB pages (see example below).

It is convenient for users to develop uart & ehternt applications, no need to go

through everything from very beginning.

The source files to implement these are put in package ‘hiflying’, including some

header files and two dynamic library ‘.so’ files. For more detail, go to check the

example source file ‘ep_api_test.c’ (under package/hiflying/src), header files (under

package/hiflying/src/lib), or API documents.

4. Image Upgrade

There two ways to update software on the target board: web upgrade and tftp

upgrade.

Eport&HF51 Series Product Linux SDK User Manual

4.1 Web upgrade

Open the web page of the target, go to ‘others’ and choose the proper release file

(image file). It may take about 30 seconds for the updating. After that, it will

automatically go back to display the main page of the system website.

If the new firmware cause problem, then must use tftp method to upgrade.

4.2 tftp upgrade

1. PC direct connect to Module. And set fixed IP：192.168.0.X

Eport&HF51 Series Product Linux SDK User Manual

2. Put UART upgrade firmware into the TFTP "D:\Cisco TFTP Server.rar\down"

directory. Such as following.

Set tftp Server directory to the above down directory.

Eport&HF51 Series Product Linux SDK User Manual

Then run“TFTPServer.exe”.

3. Power On or Reset module and continues click keyboard "Enter" key until enter

the booloader mode as following pic.（UART baud rate 115200，8，No flow

control，1）

Eport&HF51 Series Product Linux SDK User Manual

 4. After the module enter bootloader mode, then set the following command ：

cmd>set server 192.168.0.101 （PC IP address）

cmd>tftp get EP10_UPGRADE_V1.27a_20180125.bin （firmware name）

cmd>fa （Writethe download firmware into module flsh）

5. Reboot module and finish upgrade.

In original SDK, 'ep_api_test' is an test application to run manually.

You can access the device by telnet (port 2323 for Linux shell login,

user:root, password:admin) to run this application.

Eport&HF51 Series Product Linux SDK User Manual

As this test code uses service provided by 'eport', make sure 'eport'

application already there.

4.3 example

If want to add some application during boot, you need to add it in

package/zrootfs

Here is an example:

1. See the attachment 'hello_world.c', it adds an application

"/usr/bin/hello_world" in boot process.

Note: as it is going to run script like following, don't add "while(1)" in

source code.

 if(f_exists("/usr/bin/hello_world"))

 exec_cmd("/usr/bin/hello_world 1>/dev/ttyS0 2>&1 & "); //start it as a

daemon, and print log to serial port

2. add in zrootfs/makefile

 rm -f $(1)/etc/init.d/hello_world

 $(INSTALL_BIN)

$(PKG_BUILD_DIR)/init/hello_world $(1)/etc/init.d/hello_world

 ln -sf ../init.d/hello_world $(1)/etc/rc.d/S96hello_world

3. add in zrootfs/src/init/makefile

image = rcs wdk boot dbus avahi cdb telnet done sysctl hello_world

Eport&HF51 Series Product Linux SDK User Manual

hello_world: $(OBJS)

 @echo "Building $@ ..."

 $(CC) -o $@ $@.o $(LDFLAGS) $(LIBS)

4. add in rcs.c

static rcs_process start_process[] = {

 { "S01alsa" },

 { "S05wdk" },

 // { "S06usb" },

// { "S07lcd" },

 { "S10boot" },

 { "S11dbus" },

 { "S12avahi" },

// { "S15crond" },

 { "S20cdb" },

 { "S50telnetd" },

// { "S94ocfg" },

 { "S95done" },

 { "S96hello_world" },

 { "S99sysctl" },

